
IS 340: Spring 2023

All content

Open Project Management
from an “open” perspective

Instructor: Dr. Bradly Alicea

http://bradly-alicea.weebly.com

UNIT 3



Welcome 
Back!

Open Project 
Management



Documentation as a form of Community Organization



Before documentation, let’s back up and talk about 
Agile methods

Agile designs for ultimate flexibility and speed (e.g. move fast and break things).

● break down every task into its smallest units.

● getting things done fast, giving frequent updates, and changing direction on demand.

Agile >> Scrum >> Standups: https://www.atlassian.com/agile/scrum/standups

https://www.atlassian.com/agile/scrum/standups


Agile Manifesto: http://agilemanifesto.org/

20001970 2020s

Better Technical Methods

Waterfall

Infoworld: A Brief History of the Agile Method 
https://www.infoworld.com/article/3655646/a-brief-history-of-the-agile-methodology.html

Agile

Much documentation needed up 
front, development happened 

after docs are in place.

Break problems into digestible 
components, documentation is 

secondary.

Lean documentation: communication 
replaces reliance of documentation

http://agilemodeling.com/essays/agileDocumentation.htm

https://www.infoworld.com/article/3655646/a-brief-history-of-the-agile-methodology.html
http://agilemodeling.com/essays/agileDocumentation.htm


Waterfall Approach: documents specify parts (6x), top-down documentation (controlled 
versioning and complete before development).



Core Practices for Agile/Lean Documentation 
http://agilemodeling.com/essays/agileDocumentationBestPractices.htm

http://agilemodeling.com/essays/agileDocumentationBestPractices.htm


Keep documentation just simple enough, but not 
too simple.

Write the fewest documents with least overlap.

Put the information in the most appropriate place.

Display information publicly.

Core Practices for Agile/Lean Documentation (con’t) 
http://agilemodeling.com/essays/agileDocumentationBestPractices.htm

http://agilemodeling.com/essays/agileDocumentationBestPractices.htm


Keep documentation just simple enough, but not 
too simple.

Write the fewest documents with least overlap.

Put the information in the most appropriate place.

Display information publicly.

http://agilemodeling.com/essays/agileDocumentationBestPractices.htm

Iterate, iterate, iterate.

Find better ways to communicate.

Start with models you actually keep current.

Update only when it hurts.

Core Practices for Agile/Lean Documentation (con’t) 

http://agilemodeling.com/essays/agileDocumentationBestPractices.htm


Now let’s discuss the different types of 
documentation useful to your community or 

organization



Readings

The Anatomy of a Great Open Source Documentation: How to Document Your Projects on 
GitHub
https://dzone.com/articles/the-anatomy-of-a-great-open-source-documentation-h

Building great open source documentation
https://opensource.googleblog.com/2018/10/building-great-open-source-documentation.html

5 tips for making documentation a priority in open source projects
https://opensource.com/article/20/8/documentation-open-source-projects

What I’ve learned about open source project management: milestones (Tom McFarlin blog) 
https://tommcfarlin.com/open-source-project-management-milestones/

https://dzone.com/articles/the-anatomy-of-a-great-open-source-documentation-h
https://opensource.googleblog.com/2018/10/building-great-open-source-documentation.html
https://opensource.com/article/20/8/documentation-open-source-projects
https://tommcfarlin.com/open-source-project-management-milestones/


Value contributions to documentation just as much as code contributions.

Put documentation and code in the same project repo.

Make documentation a requirement for a merge or release milestone.

Have a consistent contribution process for code and documentation.

Have well-documented processes for contributing to documentation.

“5 Tips for Making Documentation” 
Recommendations



The README File
(showcase)

The Reference File
(technical details)

The Guide File
(takes used by the hand)

The Cookbook File
(how-tos and instructions for 

specific tasks)

The Blog Post
(answers to why questions)

Why Would I Use It?
FAQ

What are Its Functions and 
What Do They Do? FAQ

How do I Install This 
Project and Use Its 

Code?

Types of Documents



Documentation Practice



Documentation (con’t)

https://github.com/devoworm/README/blob/master/DevoWorm-
overview.md

https://github.com/devoworm/README/blob/master/DevoWorm-overview.md
https://github.com/devoworm/README/blob/master/DevoWorm-overview.md


Documentation (con’t)

https://github.com/DevoLearn/devolearn

https://github.com/DevoLearn/devolearn


Documentation (con’t)

https://readthedocs.org/

https://docs.openworm.org/Projects/worm-movement/

https://readthedocs.org/
https://docs.openworm.org/Projects/worm-movement/


Notion Documents

GUI-oriented Database

Internal Documents, Planning, 
Archival Features.



Notion Documents (con’t)



https://coda.io/@coda/simpler-cleaner-faster-coda-2-0-is-ready-for-your-team

Coda.io

https://coda.io/@coda/simpler-cleaner-faster-coda-2-0-is-ready-for-your-team


https://www.zenhub.com/

Zenhub Roadmaps and Epics

https://www.zenhub.com/


Zenhub is a tool that allows you to organize milestones from a set of Github issues. There is both 
a timeline view and a Kanban board view, which can be helpful for seeing the big picture.

Organizing tasks using a timeline view allows us to track milestones, which are essential for 
complex tasks like public events.

ZenHub: beyond visual timelines



Zenhub is a tool that allows you to organize milestones from a set of Github issues. There is both 
a timeline view and a Kanban board view, which can be helpful for seeing the big picture.

Organizing tasks using a timeline view allows us to track milestones, which are essential for 
complex tasks like public events.

Milestones: specific points on a project timeline. 

● anchors or as concrete goals with an associated date. Prospective milestones can be 
flexible, depending on how much is achieved. Focuses efforts.

● milestones define points at which other team members might give input. Deliverable dates, 
dates when other dependencies are expected to be available. 

● a good tip for timeline building is to have parallel activities going on. If a dependency delays 
you or otherwise ties up your resources, you can focus on another task or milestone.

ZenHub: beyond visual timelines



https://www.zenhub.com/

Zenhub Roadmaps

Tip for timeline building: include 
parallel activities.

If a dependency delays you or 
otherwise ties up your resources, 
you can focus on another task or 
milestone.

https://www.zenhub.com/


ZenHub also uses a type of organization called epics, which encapsulates a theme of work. 

An Introduction to Zenhub Epics
https://help.zenhub.com/support/solutions/articles/ 43000010341-an-intro-to-zenhub-epics

Working with Epics in Github
https://blog.zenhub.com/working-with-epics-in-github/

ZenHub Epics

https://help.zenhub.com/support/solutions/articles/
https://blog.zenhub.com/working-with-epics-in-github/


ZenHub Epics (con’t)

Epics are similar to Github issues in that they are both organized by subject. Epics introduce 
dependencies to your Github issues, and they can be used in tandem. 

Issues, and Epics together can be a very powerful way to synchronize community contributions 
and reduce conflicts with a top-down software development cycle.



More on Milestones (GitLab documentation)
https://docs.gitlab.com/ee/user/project/milestones/

The role of Milestones in Agile project management
https://blog.zenhub.com/what-is-a-milestone-in-agile-project-management/

Sprints vs. Milestones
https://medium.com/@confeurhq/sprints-vs-milestones-6fe700d101f9

A set of completed milestones from the Open Source Design project
https://opensourcedesign.net/milestones

My favorite open project management tools
https://opensource.com/article/21/3/open-source-project-management

Further Readings

https://docs.gitlab.com/ee/user/project/milestones/
https://blog.zenhub.com/what-is-a-milestone-in-agile-project-management/
https://medium.com/@confeurhq/sprints-vs-milestones-6fe700d101f9
https://opensourcedesign.net/milestones
https://opensource.com/article/21/3/open-source-project-management


Signals to non-contributors and how to keep the 
barrier to entry low



Repository Cards
https://dotdev.co/github-repository-cards/

https://dotdev.co/github-repository-cards/


Shields.io: badges as a service
https://github.com/badges

https://github.com/badges


https://github.com/Agrover112/fliscopt/blob/master/README.md

Github Badges
Shields.io: badges as a service

https://github.com/badges

DOI (permanent identifier)
Useful project information

https://github.com/Agrover112/fliscopt/blob/master/README.md
https://github.com/badges


https://github.com/Agrover112/fliscopt/blob/master/README.md

https://github.com/Agrover112/fliscopt/blob/master/README.md


Continuous Integration
(tests at PR)

Option to Run Repository 
Code in a Notebook

Github Badges
https://github.com/DevoLearn/devolearn

https://github.com/DevoLearn/devolearn


Different Levels of Contribution

Architecture (Expert)

Refactoring (High Expertise)

Bug Reports (Low Expertise)

No-code (No Expertise)



Turing Way (from the Turing Institute): how to 
work open and collaboratively

https://the-turing-way.netlify.app/

https://the-turing-way.netlify.app/


No-code Development

Glide (no-code tool)

Betty Blocks 
(no-code tool)

OpenAI Codex
(no-code tool)


