
Lecture 15

All content

Open Project Management
from an “open” perspective

Instructor: Dr. Bradly Alicea

http://bradly-alicea.weebly.com

UNIT 4



Welcome!
Open Project Management



Project Scope and Types of 
Contribution



https://www.zenhub.com/

Zenhub Roadmaps and Epics

https://www.zenhub.com/


Roadmaps involve defining deliverables, identify risks, milestones, and key 
resources.



Roadmaps involve defining deliverables, identify risks, milestones, and key 
resources.

Deliverable: what you will produce at the end of your project or unit.



Deliverable: what you will produce at the end of your project or unit.

https://dream2020.github.io/DREAM/deliverables.html

https://dream2020.github.io/DREAM/deliverables.html


Roadmaps involve defining deliverables, identify risks, milestones, and key 
resources.

Deliverable: what you will produce at the end of your project or unit.

Milestones: what things need to be completed before other things can be completed?

Soup: open can → pour into pan → turn on stove → stir → serve



Milestones: what things need to be completed before other things can be completed?

Soup: open can → pour into pan → turn on stove → stir → serveX



Milestones: what things need to be completed before other things can be completed?

Soup: open can → pour into pan → turn on stove → stir → serveX



Roadmaps involve defining deliverables, identify risks, milestones, and key 
resources.

Deliverable: what you will produce at the end of your project or unit.

Milestones: what things need to be completed before other things can be completed?

Soup: open can → pour into pan → turn on stove → stir → serve

Identify Resources and Risks: what needs to be in place before you can complete your 
project or unit? What the the risks of pushing back a deadline, or of making certain design 
choices?



Schedule

Objectives

Priorities

Claude Shannon: Information Theory, Robotic Agents, Juggler?!?
http://lkozma.net/blog/shannons-juggling-theorem/ 

Issue Creation and Tradeoffs

http://lkozma.net/blog/shannons-juggling-theorem/


Roadmap: issues at the systems-level

COURTESY
https://www.goodfirms.co/workflow-management-software/blog/best-free-open-source-workflow-management-software

How do we make a set of issues 
out of this roadmap?

https://www.goodfirms.co/workflow-management-software/blog/best-free-open-source-workflow-management-software


Issue: what is the optimal size?

What do you want to achieve?



Issue: what is the optimal size?

What do you want to achieve?

W
hat dependencies are involved?



Issue: what is the optimal size?

What do you want to achieve?

What is your time horizon?

W
hat dependencies are involved?



Issue: what is the optimal size?

What do you want to achieve?

What is your time horizon?

W
ho

 (e
xp

er
tis

e)
 is

 in
vo

lv
ed

?
W

hat dependencies are involved?



Issues are a consolidation of communication channels and interacting project goals and needs.

● a “project” is actually a program: a program of related projects moving in the same 
direction.

● but these subprojects interact and conflict: goal is to optimize the flow of activity and 
enable new ideas.

The fewer contributors your organizations and projects has, the less “process” you will need.

● fewer issues, but also less focus on issue creation and refinement. 

● number of communication channels in a team goes up as the number of people on your 
team goes up.

Issue: what is the optimal size?



Issue: what is the optimal size?

What do you want to achieve? 

Project vision, break down vision into smaller pieces. 

● what to do first, then next, then even farther in the future. Order of plausibility, priority, 
maturity.

Plausibility Priority Maturity

Issue A

Issue B

Issue C



Plausibility Priority Maturity

Issue A HIGH HIGH EARLY

Issue B MED HIGH MIDDLE

Issue C LOW LOW LATE

Issue: what is the optimal size?

What do you want to achieve? 

Project vision, break down vision into smaller pieces. 

● what to do first, then next, then even farther in the future. Order of plausibility, priority, 
maturity.



Issue Attributes

Size, Scope, and Scale

Size: what is the amount of work that needs to be done? Rule of thumb: how many 
words does it take to define issue?



Issue Attributes (con’t)

Size, Scope, and Scale

Size: what is the amount of work that needs to be done? Rule of thumb: how many 
words does it take to define issue?

Scope: what is the depth of complexity? Are there a lot of dependencies, or does it 
require new things to be put into place?



Issue Attributes (con’t)

Size, Scope, and Scale

Size: what is the amount of work that needs to be done? Rule of thumb: how many 
words does it take to define issue?

Scope: what is the depth of complexity? Are there a lot of dependencies, or does it 
require new things to be put into place?

Scale: how long does it take to complete your issue?



Issue Attributes (con’t)

From Bug Tracking (Chapter 10) in “Program Management for Open source Projects” 
(Ben Cotton)

Problem: define problem (e.g. build a library of documents).

Type/Version: label/description (e.g. getting started) and iteration (v1.0.2).

Compositionality: part of a larger component (e.g. linked to curation).

Status/Priority/Impact: indication of importance and order of importance (e.g. urgent).



Closure Criterion: what needs to be completed before an issue can be closed? 

● Who needs to review and approve? Who needs to be aware of changes?

● Public review of issues (monthly) can solve this.

Issue Attributes (con’t)



Closure Criterion: what needs to be completed before an issue can be closed? 

● Who needs to review and approve? Who needs to be aware of changes?

● Public review of issues (monthly) can solve this.

Who’s responsible?

● Who makes sure that the status of all issues is kept up to date?

● Maintainer, code owner, person who creates (or is tagged in) the issue.

Issue Attributes (con’t)



Closure Criterion: what needs to be completed before an issue can be closed? 

● Who needs to review and approve? Who needs to be aware of changes?

● Public review of issues (monthly) can solve this.

Who’s responsible?

● Who makes sure that the status of all issues is kept up to date?

● Maintainer, code owner, person who creates (or is tagged in) the issue.

Place in timeline: how do issues get prioritized? 

● first in, first out principle: oldest issues get resolved first.

● contingencies first, dependencies next: issues in order of necessity.

Issue Attributes (con’t)


