
Lecture 19

All content

Open Project Management
from an “open” perspective

Instructor: Dr. Bradly Alicea

http://bradly-alicea.weebly.com

UNIT 5

Welcome Back!

Open Project Management

Progress on Quiz 2

Wikipedia Contribution Model
discussed in “Reinventing Discovery” (Michael Nielsen)

Dynamic Division of Labor (DDL).

* one person does x amount of work, another picks up and does y amount of work

Flexible micro-contributions lower the barrier to entry:

* change a single line of code, or make edits to a Wikipedia page.

Wikipedia Contribution Model
discussed in “Reinventing Discovery” (Michael Nielsen)

Dynamic Division of Labor (DDL).

* one person does x amount of work, another picks up and does y amount of work

Flexible micro-contributions lower the barrier to entry:

* change a single line of code, or make edits to a Wikipedia page.

Project transferability raises the infrastructural costs:

* annotated code, documentation, contributions as easily-defined tasks.

Which combination of strategies increases range of ideas contributed at minimal organizational
cost?

Focus on open science: openness and
transparency can accelerate your timeline.

Two enabling phenomena

● amplifying collective intelligence.

● networked science.

Modularizing and decentralizing projects tend to
make them more accessible.

Release Life Cycle

Not how long, but how many?

● semantic versioning (x.x.x), only support the latest few releases.

● release only once or twice in the entire project life cycle.

From Chapter 8, “Program Management for Open Source Projects”
(Ben Cotton).

Release Life Cycle

Not how long, but how many?

● semantic versioning (x.x.x), only support the latest few releases.

● release only once or twice in the entire project life cycle.

Life Cycle: set of phases (alpha/beta, alpha/beta).

● Alpha: developmental releases that have passed Continuous Integration (CI).

● Beta: get feedback from potential users.

From Chapter 8, “Program Management for Open Source Projects”
(Ben Cotton).

Support Cycle

What features do you include, make functional, and maintain?

● the more features you have the more support you need.

● the longer your life cycle, the more support you need.

● release model: calendar, feature, and whim-based.

Support Cycle

What features do you include, make functional, and maintain?

● the more features you have the more support you need.

● the longer your life cycle, the more support you need.

● release model: calendar, feature, and whim-based.

Support: provide technological help in limited cases, long-term support for paying customers.

● support phase: set a time interval that makes sense (one year for free, lifetime for paying
customers).

● maintain/support cycle: make changes/record of problems to address in new release.

Schedule Model

Calendar-based: cycle ends when a certain date is reached (regular timing).

● Raspberry Pi: March 14 (3/14). Fedora Linux: third Tuesday of April.

Schedule Model

Calendar-based: cycle ends when a certain date is reached (regular timing).

● Raspberry Pi: March 14 (3/14). Fedora Linux: third Tuesday of April.

Feature-based: scope and size of release-dependent (irregular timing).

● how many features you complete work in a certain period of time. Bundle interdependent
features. Fewer releases to worry about and support.

Schedule Model

Calendar-based: cycle ends when a certain date is reached (regular timing).

● Raspberry Pi: March 14 (3/14). Fedora Linux: third Tuesday of April.

Feature-based: scope and size of release-dependent (irregular timing).

● how many features you complete work in a certain period of time. Bundle interdependent
features. Fewer releases to worry about and support.

Whim-based: make a release whenever you want (irregular timing).

● release whenever work is complete. Less intra-release structure to manage.

Issues and Milestones

Milestones: points in time that define goals and major releases.

● dependencies determine whether milestones are met.

Issues: project issues out to meet milestones.

● issues can be reused for sequential releases.

Issues and Milestones

Milestones: points in time that define goals and major releases.

● dependencies determine whether milestones are met.

Issues: project issues out to meet milestones.

● issues can be reused for sequential releases.

Accommodate external conflicts
and opportunities (WWDC)

Release
candidates Translations

Documentation and
release notes

Communicating
schedule

Managing Feature Cycles

Manage features as a series of issues and milestones.

● templates: can be used to define scope, testing plan, contingency plan, and rationale.

● scale and approval process: who decides what is included in a formal release? What is
too detailed, and what is too trivial.

How are features enforced?

● feature wranglers: open-source leaders or centralized managers.

● feature lifecycle: proposal window → timeline → completion path.

From Chapter 9, “Program Management for Open Source Projects”
(Ben Cotton).

Community
Comment Period

Feature Lifecycles

Community
Comment Period Formal Inclusion

Feature Lifecycles

Development
Work

Feature Lifecycles

Community
Comment Period Formal Inclusion

Formal Inclusion Development
Work

Feature
Retired

Feature Lifecycles

Community
Comment Period

Understanding the open source software life cycle
https://www.redhat.com/en/resources/open-source-software-life-cycle-brief

Stages of open-source software development

1. collaborators and users engage with software architecture and develop support
infrastructure.

2. software matures as people become dependent on it. A variety of uses, for a
variety of skill levels.

3. new version releases occur, software becomes the basis of new development
opportunities.

4. software is no longer viable, community breaks down.

https://www.redhat.com/en/resources/open-source-software-life-cycle-brief

Models for Software Development Lifecycle
Ruparelia, N. (2010). Software development lifecycle model. ACM SIGSOFT Software Engineering

Notes, doi:10.1145/1764810.1764814

Software development lifecycle models can be linear, iterative, or hybrid (linear/iterative).

Models for Software Development Lifecycle
Ruparelia, N. (2010). Software development lifecycle model. ACM SIGSOFT Software Engineering

Notes, doi:10.1145/1764810.1764814

Software development lifecycle models can be linear, iterative, or hybrid (linear/iterative).

1) Waterfall (iterative feedback)

operational analysis → operational specification → design/coding specifications → development →
testing → deployment → evaluation

Models for Software Development Lifecycle
Ruparelia, N. (2010). Software development lifecycle model. ACM SIGSOFT Software Engineering

Notes, doi:10.1145/1764810.1764814

Software development lifecycle models can be linear, iterative, or hybrid (linear/iterative).

1) Waterfall (iterative feedback)

operational analysis → operational specification → design/coding specifications → development →
testing → deployment → evaluation

2) B-model (extension of the waterfall model)

inception → define requirements → design → production → accept Linear phase

Maintenance cycle operation → inception → analysis → design → production → acceptance

Models for Software Development Lifecycle
(con’t)

3) U-model: decompose requirement down to the development
stage, then integrate and verify to the deploy stage.

Models for Software Development Lifecycle
(con’t)

3) U-model: decompose requirement down to the development
stage, then integrate and verify to the deploy stage.

4) Spiral model: start small, think big.

Models for Software Development Lifecycle
(con’t)

3) U-model: decompose requirement down to the development
stage, then integrate and verify to the deploy stage.

4) Spiral model: start small, think big.

5) Unified Process Model (iterative, integrated with UML):
architecture-based, case driven.

Models for Software Development Lifecycle
(con’t)

3) U-model: decompose requirement down to the development
stage, then integrate and verify to the deploy stage.

4) Spiral model: start small, think big.

6) Cathedral and Bazaar: release early, release often, listen to
your customers.

5) Unified Process Model (iterative, integrated with UML):
architecture-based, case driven.

